
Hierarchical Proof Structures

Ewen Denney1, John Power2?, and Konstantinos Tourlas2

1 USRA/RIACS, NASA Ames Research Center, CA 94035, USA
2 Laboratory for the Foundations of Computer Science, King’s Buildings,

University of Edinburgh, EH9 3JZ, SCOTLAND

Abstract. Motivated by structure arising in tactic-based theorem prov-
ing, we develop the concept of hierarchical proof tree or hiproof by char-
acterising a geometrically natural definition in terms of its family of proof
views. We first recall a definition of hierarchical proof tree, explaining its
axioms and illustrating by example. We then describe notions involved
with proof views. Then we characterise hierarchical proof trees in terms
of dags of proof views. Our ultimate goal is to axiomatise the structure
required for constructing and navigating tactic-based proofs. This is work
in progress towards that end.

1 Introduction

Consider a proof by induction as represented by Figure 1(a): the nodes are la-
belled by tactic identifiers, inclusion of one node in another indicates a subtactic
relationship, and the arrows represent sequential composition. The diagram is
read as follows: the proof consists of invoking an induction tactic, Induction.
That consists of applying an induction rule, Ind-Rule, which then generates two
subgoals. The first subgoal is handled by the Base tactic, the second by the Step
tactic. In turn, Step is defined as first applying the Rewrite tactic, and then
the Use-Hyp tactic, with Base, Rewrite and Use-Hyp treated as primitive. In
contrast to the usual presentations of a proof by induction, the emphasis is on
tactics rather than on goals and proof steps.

For a structurally somewhat more complex proof, consider Figure 1(b). At
the most abstract level, the proof consists of applying T1, and then DP. The
tactic T1 first applies T2, generating two subgoals, the first of which is handled
by WF. The second is handled by DP, which applies Normalise and then Taut.

These examples reflect, albeit very abstractly, the hierarchical structure of
tactics as appear in proof assistants such as [1–3]. In [4], we took a first abstract
step towards developing a definition and mathematical theory of such hierarchy,
ultimately aimed towards the development of interfaces, both graphical inter-
faces for individual theorem provers and interfaces between theorem provers.
Our central definition, abstracting from Figures 1(a) and 1(b), was that of a
hierarchical proof tree or hiproof. We analysed an appropriate choice of axioms
for hiproofs, repeated here in Section 2, then we studied the relationship be-
tween a hiproof and its underlying ordinary proof, gave a notion of refinement of

? John Power has been supported by EPSRC grant no. GR/586372/01.

Ind-Rule

Induction

Rewrite

Use-Hyp

StepBase

(a)

T2

WF

Normalise

Taut

DP

T1

(b)

Fig. 1. Two hierarchical proofs

hiproofs, and characterised hiproofs in terms more amenable to implementation.
In particular, using a subtle notion of map, we showed that the obvious inclusion
of a category of ordinary proof trees into one of hierarchical proof trees has a
left adjoint, with that left adjoint yielding a natural notion of the skeleton of a
hierarchical proof.

For the purposes of this paper, we shall refer to the notion of hierarchical
proof we developed in [4] as a hiproof of type 1. In [4] we also introduced type
2 hiproofs, which are an equivalent formulation of type 1 hiproofs designed to
facilitate implementation. We do not discuss type 2 hiproofs in this paper, but
we want to give a third equivalent formulation of the notion. So, for overall
consistency, we shall refer to the central new construct of this paper as a type 3
hiproof. One of the overall goals of this work is to study a diversity of possible
formulations of hierarchical proof structure in order to understand the common
structure behind hierarchy in tactic-based theorem proving.

Now consider a hiproof of type 1. A user is unlikely to view all the information
it contains at once: the main point of structuring it hierarchically is that the
proof can be viewed at different levels of abstraction in a sense we shall make
precise. In particular, consider the hiproof in Figure 1(b). At the highest level of
abstraction it can be thought of as the two step proof, T1 followed by DP. We can
think of this as an abstract proof, where T1 and DP have no internal structure,
and so are regarded as atomic steps. At the lowest level of abstraction, on the
other hand, the proof tree is formed from the atomic steps T2, WP, Normalise,
and Taut, in the obvious way. This is the skeleton of the hiproof, as defined in

[4], where it was characterised as a naturally arising left adjoint. Rather than
consider the whole skeleton directly, we could have unfolded just one of the top-
level tactics, T1 or DP, thus yielding four possible “views” of this hiproof (see
Figure 2) in total. More generally, we could unfold any abstract node (which
may itself be a tree of abstract nodes), replacing the node with its immediate
contents, yielding another tree.

T1

DP

T1

Normalise

Taut

T2

WF DP

Normalise

T2

Taut

WF

Fig. 2. Four views of a single hiproof

We call the proof trees that result from such sequences of unfolding proof
views. The skeleton of a hiproof is the special case where no nodes are abstract.
A proof view is a tree of inferences where some of the nodes may be abstract
steps, i.e., tactics. Sets of proof trees can be seen as a dynamic interpretation of
a tactic-based proof, where the possible traces of the proof’s unfolding embody
its hierarchy. This raises the question: can we take such views as primitive? In
other words, can we reformulate the notion of hiproof in terms of a set of proof
trees which are self-consistent in some sense? In this paper, we formalise the
various relevant concepts and constructions, and formulate the theorem.

In Section 2, we recall the definition of type 1 hiproof and explain its axioms,
illustrated by examples. In Section 3, we define the notion of type 3 hiproof. In
Section 4, we show how to construct a type 1 hiproof from a type 3 hiproof. And
in Section 5, we give the converse, constructing a type 3 hiproof from a type 1
hiproof.

2 Hierarchical proof trees

In this section, we recall the notion of a hierarchical proof tree or type 1 hiproof
from [4]. To motivate the definition, we first analyse, by means of an example,
the relationship between tactics and standard notions of formal proof such as
proofs in natural deduction style.

Example 1. Consider a natural deduction proof of A ⇒ A ∧ (x = x), as in
Figure 3. The obvious (backwards) proof is implication introduction, followed

by conjunction introduction, and then applying axiom and reflexivity to the
two subgoals. The essential information of the proof is the sequence of inference

A ` A
Ax

A ` x = x
Refl

A ` A ∧ (x = x)
And-I

` A ⇒ A ∧ (x = x)
Imp-I

Fig. 3. A simple natural deduction proof

rules, with the order of those rules represented by a proof tree as in Figure 4(a).
Typically, however, theorem provers allow the use of higher-level tactics that

And−I

Ax Refl

Imp−I

(a)

And−I

Ax Refl

Imp−I

Intros

(b)

And−I

Intros

Prop

Ax

Refl

Imp−I

(c)

Fig. 4. Introducing hierarchy in proof diagrams by grouping

group together the application of a number of low-level inferences. For example, it
is common to have an Intros command, which performs all possible introduction
rules. We can indicate this on the proof diagram by grouping Imp-I and And-I

together, as in Figure 4(b). We could go further and define a tactic, Prop, which
first calls Intros, and then tries to use axioms wherever possible. This gives the
hierarchical structure of Figure 4(c). ut

Example 1 shows that proofs can be represented as tactic- (or axiom and
inference)-labelled trees with hierarchical structure on the set of nodes. The tree
structure is straightforward, but the hierarchical structure and its interaction
with the tree structure are more complex. We formalise the hierarchical structure
by a partial order, with v ≤i w represented visually by depicting the node v as

sitting inside the node w. The partial order satisfies axioms to the effect that
it is generated by a (finite) forest, and it is sometimes convenient to regard it
as such. Our hierarchical trees are labelled by tactics, so we henceforth assume
that Λ is a fixed non-empty set of tactic identifiers or method identifiers. We
write isrootF (v) (or isroot→) for the assertion that there is a tree in forest F

with root v, and we write siblingsF (v, v′) (or siblings
→

(v, v′)) if v and v′ have
the same parent or are both roots.

Definition 1. A hierarchical proof tree, or (type 1) hiproof for short, consists
of a tuple 〈V,≤i,→s, tac〉, comprising a (necessarily finite) forest qua poset
i = 〈V,≤i〉 and a forest s = 〈V,→s〉, together with a function tac : V → Λ

which labels the nodes in V with tactic identifiers in Λ, subject to the following
conditions:

1. arrows always target outer nodes: whenever v →s w1 and w1 <i w2, then
v <i w2

2. arrows always emanate from inner nodes: whenever w1 ≤i v and v →s w2

then v = w1

3. inclusion and sequence are mutually exclusive: whenever v ≤i w and v →?
s w,

then v = w

4. given any two nodes v and v′ which both lie at the top inclusion level, or are
both immediately included in the same node, then at most one of v, v′ has no
incoming →s edge:

∀v, v′ ∈ V. siblings i(v, v′) ∧ isroots(v) ∧ isroots(v
′) =⇒ v = v′.

ut

Note the subtlety in the first condition, especially in combination with the
third: an arrow from a node v can only go to an outer node relative to the
inclusion level of v. So, for instance, Example 1 satisfies the condition. Observe
that the fourth condition together with finiteness imply that there is a unique
node that is maximal with respect to ≤i and has no incoming →s edge, acting
as a kind of hierarchical root.

The main theorem justifying the axioms in [4] shows that every hiproof un-
folds to give an ordinary proof (its skeleton). But here we analyse the axioms by
looking at some non-examples. The axioms are designed to ensure that none of
the diagrams in Figure 5 forms a hiproof.

In tactical theorem proving, one tactic is followed by another, which unfolds
to give another tactic, and so on. So tactics are invoked ‘at the most abstract
level.’ But Figure 5(a) contradicts that because if T1 is followed by T3 and T2

unfolds to T3, the more abstract T2 should follow T1. Equivalently, it would be
permissible for T3 to follow T1, but then the fact that T2 is an abstraction of T3
would be irrelevant to the proof and should not be added after the composition
of T1 and T3. Conversely, when a tactic finishes executing, control flows from
the most recently executed tactic, i.e. the innermost, outwards, but Figure 5(b)
contradicts that. We want to exclude Figure 5(c) too in order to avoid circularity

T2

T3

T1

(a)

T1

T2

T3 T4

(b)

T1

T2

(c)

T1

T2 T3

(d)

Fig. 5. Four non-examples of hiproofs

of unfolding and sequencing. Finally, Figure 5(d) fails because tactic T1 should
unfold to give a unique subsequent tactic to execute, not two.

The first condition in the definition of hiproof prohibits the inclusion hierar-
chy from being ‘downwards’ transcended by composition, e.g. as in Figure 5(a).
The second condition precludes Figure 5(b). The third condition precludes Fig-
ure 5(c): the similar structure with the arrow pointing the other direction is
already precluded by the second condition. And the fourth condition precludes
Figure 5(d) as well as the similar non-proof example obtained from Figure 5(d)
by removing the node labelled T1. For a positive example of a hiproof, consider
Figure 1(b).

The main ideas behind the definition of hiproof can be understood in terms
of Figures 1(a) and 1(b). Although motivated by diagrams, we have abstracted
away from geometry to discrete mathematical structure. The central features
are as follows:

– we do not require tactic identifiers to be unique as a tactic may be applied
repeatedly in a proof. But we informally refer to proof nodes by their tactic
identifiers where there is no ambiguity.

– there are only two relationships that can hold between nodes: inclusion, rep-
resenting the unfolding of a tactic into its definition, with arrows representing
sequential composition. For example, in Figure 1(b), the decision procedure
DP unfolds to give the composition of Normalise with Taut.

– hiproofs are essentially tree-like in that subgoals are independent: a tactic
acts on a single subgoal. That is not generally the case in tactical theorem
proving, and we intend to extend the definition accordingly in future work.
Tactics usually return a list of subgoals, but we abstract away from the order
on child tactics.

A hiproof, therefore, consists of a finite collection of tactic-labelled nodes, related
by inclusion and composition. Although the diagrams represent abstract versions
of full proofs, we are interested in how such proofs are constructed, and so we
consider partial proofs as well-formed.

3 Hiproofs as families of proof views

A hierarchical proof yields and can be characterised by a collection of non-
hierarchical proofs, i.e., by simple inference trees, that are self-consistent in a
sense that we make precise in this section. These ordinary proofs generated by the
hiproof can be regarded as views of the hiproof at various levels of abstraction
given by all possible “unfoldings”. Such views may, for instance, appear on a
computer screen when one clicks on a particular node of a hiproof.

A first attempt to characterise hiproofs in terms of such views is to try to
characterise a hiproof by the set of its partial underlying proofs. But that is not
subtle enough as it does not distinguish between the two hiproofs in Figure 6,
both of which would be interpreted as the set of two trees, {T1, T2 → T3}. So
we need to consider the total underlying proofs of a hiproof. The second hiproof
in Figure 6 now has interpretation {T1 → T3, T2 → T3}, and the first is as
before.

T1

T2

T3

T1

T2

T3

Fig. 6. Two distinct hiproofs with the same underlying proof

But that is still not delicate enough: taking the sets of the underlying proofs of
a hiproof does not distinguish between hiproofs with the structures T1 ≤i T2 and
T2 ≤i T1. So we replace sets by lists that represent the sequence of unfoldings
of a hiproof. But there are several ways in which a hiproof can be unfolded. If
we take all possible unfoldings, we obtain the structure of a dag, which, finally,
has sufficient structure to provide a characterisation. The main technical part of
our work involves characterising those dags that thus arise.

The characterisation requires a delicate operation that grafts a tree t′ at a
vertex v of a given tree t, with an embedding map, f , from the children of v into
the nodes of t, thus generalising the idea of substituting a tree for a leaf vertex
in another tree. Formally, the definition is as follows:

Definition 2. Let tA = 〈VA,→A, rA〉 and tB = 〈VB ,→B , rB〉 be (rooted) trees,

v0 ∈ VA, and f a map from the children of v0 to VB. Then graft(tA, v0, tB , f)
def
=

〈V,→, r〉 is the tree where

– V = VA \ {v0} + VB,
– v → v′ if and only if either of the following hold

1. v, v′ ∈ VA \ {v0} and v →A v′

2. v, v′ ∈ VB and v →B v′

3. v ∈ VA, v′ = rB and v →a v0

4. v′ is a child of v0 and v = f(v′)
– r = rB if v0 = rA or otherwise r = rA. ut

Note that we discard the vertex v0 instead of the root of the tree being
grafted.

Example 2.

graft

































a0

a1 a2

a3 a4 a5

a6

, a2 ,

b0

b1 b2

b3

, {a3 7→ b1, a4 7→ b0, a5 7→ b2}

































=

a1

a4 b2

b0

a0

b1

a5b3a3

a6

It is routine to extend the definition of grafting to incorporate labelling.
Labels are taken in the set Λ of tactic identifiers. We do not insist that the
labelling functions on the two trees be consistent with each other on v0 and rB .

Definition 3. Let 〈tA, lA〉 and 〈tB , lB〉 be trees labelled over Λ and v0 ∈ VA.
Then

graft(〈tA, lA〉, v0, 〈tB , lB〉, f)

is the labelled tree 〈graft(tA, v0, tB , f), l〉 where l : VA \ {v0} + VB → Λ is defined
as follows:

1. whenever v ∈ VB, l(v) = lB(v)
2. whenever v ∈ VA and v 6= v0, l(v) = lA(v). ut

For simplicity of presentation we shall tacitly assume that, whenever we write
graft(tA, v0, tB , f), the sets VA and VB of vertices in tA and tB are disjoint,
i.e., VA ∩ VB = ∅, whereby also v0 6∈ VB . So the set of vertices underlying
graft(tA, v0, tB , f) is VA \ {v0} ∪ VB .

In order to give a coherent definition of a type 3 hiproof, we first need to
observe a few facts about grafting. They are as follows:

Lemma 1. (Injectivity of grafting) graft(t, v0, t1, f) = graft(t, v0, t
′

1, f
′) implies

t1 = t′1 and f = f ′. ut

Lemma 2. (Commutativity of grafting)
graft(graft(t0, v1, t1, f1), v2, t2, f2) = graft(graft(t0, v2, t2, f2), v1, t1, f1). ut

Lemma 3. (Independence of grafts) Let t0 = 〈V0,→0, r0〉 be a tree and v1, v2

be distinct vertices in V0. Then

graft(graft(t0, v1, t1, f1), v2, t2, f2) = graft(graft(t0, v2, t
′

2, f
′

2), v1, t
′

1, f
′

1)

implies ti = t′i and fi = f ′

i , for i = 1, 2. ut

We can now formally define type 3 hiproofs:

Definition 4. A hiproof of type 3 is a tuple 〈U, , τ, β〉, where

– 〈U, 〉 is a dag,

– τ : U → Λ-Tree is a function, assigning to each vertex u ∈ U a Λ-labelled
tree τ(u), and

– β assigns to each pair 〈u, u′〉 ∈ a vertex in τ(u).

Writing u
v
 u′ to mean the existence of u, u′ ∈ U such that 〈u, u′〉 ∈ and

β(〈u, u′〉) = v, the above data is subject to the following conditions:

1. 〈U, 〉 has a source, which we denote by u>

2. if u
v
 u′, there exists a labelled tree γ and a map f such that τ(u′) =

graft(τ(u), v, γ, f)

3. if u0

v
 u1 and u0

v
 u2, then u1 = u2, and

4. if u0

v1

 u1 and u0

v2

 u2, there exists u3 such that u1

v2

 u3 and u2

v1

 u3. ut

This definition formulates the discussion at the beginning of the section, that a
hiproof can be represented as a dag of proof trees. The top is the most abstract
proof, the bottom (as we will see) is the most concrete proof, i.e. the underlying
skeleton. The second and third conditions give the meaning of the dag in terms
of the grafting of proof trees, while the fourth is a completeness condition: if you
can unfold nodes separately, then you can unfold them together.

Proposition 1. A dag 〈U, 〉 satisfying the conditions on a dag in Definition 4
has a (necessarily unique) sink u⊥.

Proof. (Sketch) This follows from general theorems on abstract rewriting systems
satisfying the diamond property, as the rewriting system in question is strongly
and uniquely normalising. ut

4 From hiproofs of type 3 to hiproofs of type 1

In this section, we construct a type 1 hiproof from a type 3 hiproof. This first
requires some notation, then a subtle construction combining a type 1 hiproof
with a tree: we build our final type 1 hiproof by an inductive process, requir-
ing several intermediary type 1 hiproofs as inductive steps, hence the need to
combine a type 1 hiproof inductively with a tree.

First observe that by Lemma 1, whenever u
v
 u′ holds in a type 3 hiproof, the

labelled tree γ and map f given by the third condition are unique up to isomor-

phism such that τ(u′) = graft(τ(u), v, γ, f). We shall therefore write u
v,γ,f
 u′, in-

stead of u
v
 u′, when knowledge of the unique γ and f is required. By Lemma 3,

we have the following:

Proposition 2. For v1 6= v2, whenever u0

v1,γ1,f1

 u1

v2,γ2,f2

 u3 and u0

v2,γ′

2
,f ′

1

u2

v1,γ′

1
,f ′

2

 u3 in a type 3 hiproof, one has γ1 = γ′

1, γ2 = γ′

2, f1 = f ′

1 and f2 = f ′

2.
ut

We extend the notation to finite lists of 〈v, γ〉 pairs. Then for every such list
σ = 〈v0, γ0〉, . . . , 〈vn−1, γn−1〉, we write

u
σ
 u′

to mean

u
v0,γ0

 u0

v1,γ1

 . . .
vn−1,γn−1

 un and un = u′ .

As usual, we write 〈v, γ〉 :: σ for the list with head 〈v, γ〉 and tail σ.
Now we inductively present a family F of operations on hiproofs of type 1,

indexed by paths u
σ
 u′ in a hiproof of type 3. The idea is to gradually build up

a (type 1) hiproof by combining all the trees along a path in a hiproof of type
3. We need an operation h /v0 γ extending a type 1 hiproof h using the labelled
tree γ at the node v0. This is defined as follows:

Definition 5. Let h = 〈Vh,≤i,→s, tac〉 be a hiproof of type 1, and let v0 ∈ Vh be
≤i-minimal. Then given a Λ-labelled tree γ = 〈Vγ ,→, r, l〉, and a map f from the
children of v0 (with respect to →s) into Vγ , define h/v0,f γ to be 〈V ′,≤′

i,→
′

s, tac
′〉

where

– V = Vh + Vγ

– v ≤′

i u if and only if either of the following hold

1. v, u ∈ Vh and v ≤i u

2. v ∈ Vγ , u ∈ Vh and v0 ≤i u

– v →′

s u if and only if either of the following hold

1. v, u ∈ Vγ and v → u

2. u ∈ Vh, v ∈ Vγ , u is a child of v0, and f(u) = v

3. v, u ∈ Vh, v 6= v0 and v →s u

– tac′ = tac + l. ut

The difference between this construction and that of graft(h, v0, γ, f) is that
here h can be an arbitrary hiproof (whereas for grafting h must be a tree) and we
keep the node v0 and put γ inside it (since v0 is ≤i-minimal it has no ‘contents’)
rather than replacing v0 by γ. Again, when we write h /v0,f γ, we shall tacitly
assume that the sets Vh and Vγ underlying h and γ respectively, are disjoint. This
allows us to regard the set of vertices underlying h/v0 γ as being simply Vh ∪Vγ .
And by “suitable” labelled trees, we mean γ1 and γ2 for which Vh ∩ Vγ1

= ∅,
Vh ∩ Vγ2

= ∅ and Vγ1
∩ Vγ2

= ∅.

Lemma 4. (Commutativity of /) If v1 and v2 are distinct vertices in a type 1
hiproof h, then h/v1,f1 γ1 /v2,f2 γ2 = h/v2,f2 γ2 /v1,f1 γ1 for any suitable Λ-labelled
trees. ut

Proposition 3. (Well-definedness of /) Let h = 〈V,≤i,→s, tac〉 be a hiproof of
type 1 and γ any suitable Λ-labelled tree. h /v,f γ is a hiproof of type 1 whenever
v ∈ V is ≤i-minimal and f is a suitable map. ut

Now let u
σ
 u′ be a path in a hiproof of type 3 and h any hiproof of type 1.

We proceed to define Fσ by induction on the length of the list σ:

– Fu(h) = h
– F

u
v,γ,f
 u′

σ′

 u′′
(h) = F

u′
σ′

 u′′
(h /v,f γ).

Any labelled tree may be trivially regarded as a “flat” hiproof of type 1.
Formally:

Definition 6. We define the embedding, E : Tree → Hiproof 1, as the map
which takes γ = 〈V,→, r, l〉 to 〈V, idV ,→, l〉. ut

However, we will often blur the distinction and regard trees as type 1 hiproofs
when convenient.

We showed in [4] that E extends to a functor from a category whose objects
are proof trees to one whose objects are type 1 hiproofs, and proved that it has a
left adjoint, characterising a natural construction of the skeleton, or underlying
ordinary proof, of a type 1 hiproof.

Corollary 1. F
u

σ
 u′

(τ(u)) is always a well-formed hiproof of type 1. ut

Writing σ ∼ σ′ to mean that (v, γ, f)-lists σ and σ′ are permutations of one
another, we finally have:

Theorem 1. Whenever u
σ
 u⊥ and u

σ′

 u⊥ are paths in a type 3 hiproof, one
has

1. σ ∼ σ′; and
2. for all h, F

u
σ
 u⊥

(h) = F
u

σ′

 u⊥

(h).

ut

Theorem 1 shows that no matter which path is used from a type 3 hiproof,
F combines the trees along that path into the same type 1 hiproof. We can now
define µ31.

Definition 7. µ31(h3) = Fσ(E(u>)), where u>

σ
 u⊥ is any path in h3. ut

5 From type 1 to type 3 hiproofs

In this section, we give a converse to our construction of a type 1 hiproof from
a type 3 hiproof. We first recall the definition of the skeleton of a type 1 hiproof
from [4].

Definition 8. Let h = 〈V,≤i,→s, t〉 be a type 1 hiproof. We define the skeleton
of h, written sk1(h), to be the Λ-labelled tree 〈VT ,→T , r〉, corresponding to the
finite poset T = 〈VT ,≤T 〉, where VT are the leaves of ≤i, and v1 ≤ v2 if and
only if there exists a v ∈ V such that v2 ≤i v and v1 →s v. ut

For example, the skeleton of Figure 1(b) is the rightmost tree in Figure 2.

Proposition 4. The definition above gives a well-formed tree.

Proof. We must show that for all v ∈ VT , there exists a unique path from r to v.
There must exist a (>1

i ∪ →s)-path from the root of h1 to v, by induction. This
path must be unique since each vertex has a unique predecessor. ut

Definition 9. Let h3 = 〈U, , τ, β〉 be a type 3 hiproof. We define the skeleton
of h3, written sk3(h3), to be the tree, τ(u⊥), where u⊥ is the sink guaranteed by
Proposition 1. ut

The next result shows that this is a reasonable definition of skeleton. In other
words, it corresponds to skeletons of type 1.

Proposition 5. For all hiproofs h3 of type 3, sk3(h3) = sk1(µ31(h3)) and for
all hiproofs h1 of type 1, sk1(h1) = sk3(µ13(h1)). ut

In order to define the translation from type 1 to type 3, we first need to
define a notion of abstraction of hiproofs at a node.

Definition 10. Let h1 = 〈V,≤i,→s, t〉 be a type 1 hiproof, and let z ∈ V . We
define the abstraction of h1 at z, written abs1(z, h1), to be the type 1 hiproof
〈V ′,≤′

i,→
′

s, t
′〉, where V ′ = {v ∈ V |v 6<i z}, ≤′

i and t′ are the restrictions of
≤i and t to V ′, and v1 →′

s v2 if and only if v1, v2 ∈ V ′, and either v1 6= z and
v1 →s v2, or v1 = z and there exists a v ≤i z such that v →s v2. ut

This is, in some sense, dual to the skeleton since it throws away the contents of
a node. We say that h′ is an abstraction of h if h′ is the abstraction of h at v

for some v.
To define a map from type 1 to type 3, we must extend the definition of

abstraction for type 1 to sets of nodes. First note that if h1 nodes z1 and z2 are
≤i-incomparable, then abs1(z1, abs1(z2, h1)) = abs1(z2, abs1(z1, h1)).

Let I be a ≤i-incomparable set of nodes in h1. Then, abs1(I, h1) is well-
defined via

abs1({}, h1) = h1

abs1(I ∪ {z}, h1) = abs1(z, abs1(I, h1)), for z 6∈ I.

Abstraction can also be defined for type 3 hiproofs but this is not needed
here to define the translation.

Definition 11. Define µ13 : Hiproof1 → Hiproof3 as the function sending
each hiproof h1 = 〈V,≤i,→s, tac〉 of type 1 to the hiproof 〈U, , τ, β〉 of type 3
given by the following data:

– The component trees are the skeletons of the abstractions of h1 for all ≤i-
incomparable subsets

– t1
v
 t2 if and only if t1 = sk1(abs1(I1, h1)), t2 = sk1(abs1(I2, h1)), where

I1 = I ∪ {v}, v 6∈ I, I2 = I ∪ {v′ | v′ <1
i v}.

ut

We can show that u> = sk1(abs1(Imax , h1)), where Imax is the set of ≤i-
maximal nodes, and u⊥ is the skeleton of h1, i.e. sk1(abs1({}, h1)). When t =
sk1(abs1(I, h)), we will write t as tI . Note that I is not unique, in general, since
any node which is ≤i-minimal, for example, can be added with no effect.

Proposition 6. µ13 is well-defined.

Proof. To show that µ13 is well-defined, we must show that µ13(h1) is a valid
type 3 hiproof.

First we characterise ∗. Define I <1
i I ′ if and only if I ′ = I0 ∪{v}, v 6∈ I0,

and I = I0 ∪ {v′ | v′ <1
i v}. Then define I ≤i I ′ if and only if I (<′

i)
∗ I ′. Now,

we have that I ≤i I ′ implies ∀i ∈ I .∃i′ ∈ I ′ . i ≤i i′ (though not in the other
direction). Clearly, tI

∗ tI′ if and only if I ′ ≤i I.
Next, we show that ≤i is a partial order. It is reflexive and transitive by

definition. To see that it is antisymmetric, suppose I ≤i I ′ and I ′ ≤i I. Let
v ∈ I. Then there exists a v′ ∈ I ′ such that v ≤i v′, and a v2 ∈ I such that
v ≤i v2. Hence v = v′ (by antisymmetry of ≤i), and so I ⊆ I ′. Likewise, I ′ ⊆ I,
so I = I ′, and we have shown antisymmetry.

This shows that µ13(h1) is a dag. We must also check the type 3 conditions:

1. u> is the top, since each I ≤i {i | i is ≤i −maximal}.
2. Define the shell of a hiproof, shell(h), as abs1(Imax, h), and sub(h, v) to

be the hiproof ‘inside the node v in h’, i.e. the hiproof rooted at the top node
included in v, and with no nodes outwith v.
Then, if t1 = sk1(abs1(I ∪ {v}, h))

v
 t2 = sk1(abs1(I ∪ {v′|v′ <1

i v}, h)),
then it can be shown that t2 = graft(t1, v, γ, f), where γ = tree(h, v), is
defined as shell(sub(h, v)), and f , mapping the children of v in t1 to nodes
in t2, is given by v1 7→ v2 if and only if v2 is the parent of v1 in t2, and so
v2 ∈ γ.

3. By the definition of
v
 , u0 = sk1(abs1(I ∪{v}, h))

v
 u1, u2 implies u1, u2 =

sk1(abs1(I ∪ V ′, h)), where V ′ = {v′ | v′ <′

i v}.
4. Suppose t

v1

 t1 and t
v2

 t2, then we have t = sk1(abs1(I ∪ {v1, v2}, h))
v1

sk1(abs1(I ∪V ′

1 ∪{v2}, h)), and t
v2

 sk1(abs1(I ∪{v1}∪V ′

2 , h)). Then these
come together confluently as sk1(abs1(I ∪ V ′

1 ∪ V ′

2 , h)).
ut

One needs to do a little work to show that the constructions yielding type 1
and type 3 hiproofs from each other are mutually inverse up to coherent isomor-
phism: the latter point requires some straightforward category theory to make
precise.

6 Conclusions

We have presented definitions of two structures arising in tactic-based theorem
proving. The primary definition encapsulates our graphical intuition for this form
of hierarchical proofs, and the other corresponds more closely to dynamic traces
of unfoldings or proof views.

In work that we have not described in this paper, we have also looked at
ordered hiproofs, where the underlying proof structures are ordered trees (in
contrast to the unordered trees considered here), and hierarchical structures
induced from proofs forests, which we call hitacs. Indeed, there is a wide range
of hi-structures which can be induced from a correspondingly wide range of tree-
based proof structures. We aim to develop the necessary categorical machinery
for placing them in a common framework. Finally, we have also developed a
term language and equational calculus, as well as the natural connections to the
semantic structures presented here.

References

1. Cheikhrouhou, L., Sorge, V.: PDS — A Three-Dimensional Data Structure for
Proof Plans. In: Proceedings of the International Conference on Artificial and
Computational Intelligence for Decision, Control and Automation in Engineering
and Industrial Applications (ACIDCA’2000), Monastir, Tunisia (2000)

2. Kapur, D., Nie, X., Musser, D.R.: An overview of the Tecton proof system. Theo-
retical Computer Science 133 (1994) 307–340

3. Richardson, J.D.C., Smaill, A., Green, I.: System description: proof planning in
higher-order logic with Lambda-Clam. In: 15th International Conference on Auto-
mated Deduction. (1998) 129–133

4. Denney, E., Power, J., Tourlas, K.: Hiproofs: A hierarchical notion of proof tree.
In: Proceedings of Mathematical Foundations of Programing Semantics (MFPS).
Electronic Notes in Theoretical Computer Science (ENTCS), Elsevier (2005)

